Evaluation of the Lopatinski Determinant for Multi-dimensional Euler Equations
نویسندگان
چکیده
There is a large body of literature on the problem of stability for inviscid shock waves and in particular for gas dynamics, see [2, 17, 3, 5, 6, 9, 10, 16, 4, 7, 21, 12, 13, 1, 14, 15, 24]. The purpose of this appendix is to calculate the Lopatinski determinant, or “stability function,” for the Euler equations of compressible gas dynamics. We describe two approaches to this problem. In the first we use a change of variables to simplify the computation. In the second method we take advantage of the Galilean invariance of the Euler equations and exploit a relationship between the eigenvectors of a particular pair of matrices. As a preliminary step for the first technique, we discuss how the Lopatinski determinant behaves under a change of coordinates. Consider an inviscid system of n hyperbolic conservation laws in d space dimensions,
منابع مشابه
Low Frequency Stability of Multi-dimensional Inviscid Planar Detonation Waves
We consider the problem of multi-dimensional linearized stability of planar, inviscid detonation waves. For an abstract, multi-step reaction model a normal mode analysis leads to a stability function similar to the Lopatinski determinant for gas dynamics. In the lowfrequency/long wave limit of the perturbation we obtain explicit criteria for uniform stability, weak stability, and strong instabi...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملThree-dimensional Vibration Suppression of an Euler-bernolli Beam via Boundary Control Method
In this paper, the general governing equations of three-dimensional vibrations of an Euler-Bernoulli Beam under influences of system dynamics are derived by the Hamiltonian method. Then two fundamental cases of a cantilever beam and a rotating beam are considered. The conventional methods for vibration suppression debit to expenses and make new problems such as control spillover because they ar...
متن کاملConstructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations
In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...
متن کاملNumerical solution of two-dimensional integral equations of the first kind by multi-step methods
In this paper, we develop multi-step methods to solve a class of two-dimensional nonlinear Volterra integral equations (2D-NVIEs) of the first kind. Here, we convert a 2D-NVIE of the first kind to a one-dimensional linear VIE of the first kind and then we solve the resulted equation numerically by multi-step methods. We also verify convergence and error analysis of the method. At t...
متن کامل